Adaptive spacetime discontinuous Galerkin method for hyperbolic advection–diffusion with a non-negativity constraint
نویسندگان
چکیده
Applications where the diffusive and advective time scales are of similar order give rise to advection– diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models. Non-Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propagation speeds in Fickian models. In this work, we implement a modified, frame-invariant form of Cattaneo’s hyperbolic diffusion relation within a spacetime discontinuous Galerkin advection–diffusion model. An hadaptive spacetime meshing procedure supports an asynchronous, patch-by-patch solution procedure with linear computational complexity in the number of spacetime elements. This localized solver enables the selective application of optimization algorithms in only those patches that require inequality constraints to ensure a non-negative concentration solution. In contrast to some previous methods, we do not modify the numerical fluxes to enforce non-negative concentrations. Thus, the element-wise conservation properties that are intrinsic to discontinuous Galerkin models are defined with respect to physically meaningful Riemann fluxes on the element boundaries. We present numerical examples that demonstrate the effectiveness of the proposed model, and we explore the distinct features of hyperbolic advection–diffusion response in subcritical and supercritical flows. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
Adaptive Unstructured Spacetime Meshing for Four-dimensional Spacetime Discontinuous Galerkin Finite Element Methods
We describe the spacetime discontinuous Galerkin method, a new type of finite-element method which promises dramatic improvement in solution speed for hyperbolic problems. These methods require the generation of spacetime meshes that satisfy a special causality constraint. This work focuses on the extension of the existing 2d×time spacetime meshing algorithm known as TentPitcher to 3d×time prob...
متن کاملRiemann solutions for spacetime discontinuous Galerkin methods
Spacetime discontinuous Galerkin finite element methods [1–3] rely on ‘target fluxes’ on elementboundaries that are computed via local one-dimensional Riemann solutions in the direction normal toelement face. In this work, we demonstrate a generalized solution procedure for linearized hyperbolicsystems based on diagonalisation of the governing system of partial differential equa...
متن کاملAn hr–adaptive discontinuous Galerkin method for advection–diffusion problems
We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre–processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection–diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed dis...
متن کاملDiscontinuous Galerkin methods for first-order hyperbolic problems
In this paper we consider discontinuous Galerkin (DG) finite element approximations of a model scalar linear hyperbolic equation. We show that in order to ensure continuous stabilization of the method it suffices to add a jump-penalty-term to the discretized equation. In particular, the method does not require upwinding in the usual sense. For a specific value of the penalty parameter we recove...
متن کاملDiscontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection
We construct and analyze a discontinuous Galerkin method to solve advectiondiffusion-reaction PDEs with anisotropic and semidefinite diffusion. The method is designed to automatically detect the so-called elliptic/hyperbolic interface on fitted meshes. The key idea is to use consistent weighted average and jump operators. Optimal estimates in the broken graph norm are proven. These are consiste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015